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Abstract 

Introduction/Main Objectives:This research aims to investigate how digital transformation, company 
size, and profitability influence tax avoidance behavior in healthcare companies listed on the Indonesia 
Stock Exchange (IDX) between 2022 and 2024. 

Background Problems: Despite post-pandemic performance growth—marked by increased revenue, 
asset expansion, and accelerated digitalization—the healthcare sector's average Effective Tax Rate 
(ETR) remains lower than the statutory corporate tax rate, indicating persistent potential for tax 
avoidance. 

Research Methods: The study employs an associative quantitative approach using secondary data 
from annual financial reports. Data analysis is conducted through multiple linear regression, with the 
Effective Tax Rate (ETR) serving as the measure for tax avoidance. 

Finding/Results: Digital transformation, company size, and profitability collectively have a significant 
impact on tax avoidance.Individually, digital transformation and company size show a significant effect 
on tax avoidance.Profitability has only a slightly significant individual effect.Digital transformation acts 
as a key factor in reducing tax avoidance practices.Larger companies exhibit greater scope for tax 
avoidance. 

Conclusion: Digital transformation is an effective and significant driver in reducing tax avoidance, 
whereas larger company size correlates with increased potential for such practices. The findings 
highlight the importance of digital adoption and regulatory attention to firm scale in mitigating tax 
avoidance. 
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Introduction  

Reliable real-time perception of water surface obstacles plays a critical role in maritime safety 
and marine navigation. Autonomous maritime systems and intelligent navigation platforms 
increasingly rely on computer vision to perceive their surroundings and support safe decision-
making in dynamic environments. Compared to land-based perception systems, water surface 
environments pose unique challenges such as high visual noise from wave interference, glare 
from specular reflection and limited resolution for small or distant objects like floating debris 
and aquatic plants. These environmental characteristics reduce the reliability of traditional rule-
based image processing or classical feature-matching techniques which often struggle to 
differentiate meaningful objects from background noise (Wang et al., 2023). As a result, 
computer vision techniques powered by deep learning have emerged as transformative 
solutions offering high-resolution detection capabilities adaptable to edge-constrained 
platforms (Zhang et al.,2021; Sung et al.,2020; Yang et al.,2024). 

Among deep learning models, the You Only Look Once (YOLO) family has gained prominence 
due to its balance of detection accuracy and real-time inference speed. Earlier versions such 
as YOLOv3 and YOLOv5 have demonstrated strong performance in maritime object detection 
tasks including vessel classification, debris monitoring and surface anomaly detection. Recent 
advances in YOLO-series models have revolutionized real-time object detection for maritime 
applications achieving superior speed-accuracy trade-offs. For instance, YOLOv5 and 
YOLOv7 variants have demonstrated mAP improvements of 10-15% on water surface targets 
through lightweight architectures and attention mechanisms tailored for USVs (Al-Hattab et al., 
2023; Li et al., 2023; Yang et al., 2024). In other hands, recent advancements such as YOLOv8 
and YOLOv11 introduce transformer-based feature extraction, improved bounding box 
regression and enhanced training stability that enabling more robust performance in 
environments with high object variability and clutter (Khanam et al., 2024; Yu et al., 2024). 
Despite these improvements, most pretrained models rely on large-scale generalized datasets 
such as COCO which do not adequately represent domain-specific maritime features such as 
rare obstacles like variety shapes of ship, structure, aquatic plant and floating debris (Kim et 
al., 2022; Wang et al., 2023). This gap highlights the need for dataset customization and fine-
tuning to enhance contextual recognition ‘performance.  

To address the dataset scarcity challenge, recent studies have incorporated transfer learning 
and dataset augmentation tools such as Roboflow to construct annotated datasets tailored to 
specific detection environments. Fine-tuning pretrained models on domain-specific datasets 
has been shown to significantly improve detection accuracy while requiring limited 
computational cost compared to training from scratch (Lin et al., 2021; Reddy & Basha., 2025). 
However, deployment of such models often remains limited to high-performance desktop 
environments and only a few studies demonstrate fully embedded implementation suitable for 
real-time field deployment (Haijoub et al., 2024). 

Hardware acceleration plays a critical role in the feasibility of onboard AI deployment for 
maritime navigation. The NVIDIA Jetson platform is increasingly adopted for edge inference 
because it provides GPU-accelerated parallel processing capabilities with a relatively low 
power footprint and enabling real-time object detection in resource-constrained environments 
(Signaroli et al., 2025). When integrated with stereoscopic cameras, embedded perception 
systems have the potential not only to detect objects but also to infer spatial relationships such 
as distance, object depth and potential collision risk (Al-Hattab et al., 2023). This capability is 
essential in maritime navigation, where floating objects, drifting debris or static obstacles such 
as piers and rocky structures may pose direct hazards. 

Given the technological landscape and ongoing research needs, this study focuses on 
developing an AI-driven water surface obstacle detection system using YOLOv11 fine-tuned 
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with a custom maritime dataset. The dataset was prepared using Roboflow and annotated into 
four key classes relevant to operational maritime environments: boat, floating debris, structure, 
and aquatic plant. The model was trained using a transfer learning strategy based on 
pretrained COCO weights and deployed on a Jetson Orin NX platform integrated with a stereo 
vision system. The primary objective of this study is to evaluate the performance and feasibility 
of the embedded system for real-time obstacle detection in varying field conditions. The 
approach aims to bridge the gap between controlled research environments and deployable 
real-world maritime applications while contributing toward safer autonomous navigation 
systems for inland waterways, coastal zones and marine monitoring operations. 

Methodology 

Dataset Preparation and Model Fine-Tuning 

Due to the absence of suitable public datasets that represent real maritime environments, a 
custom dataset was developed for this study. Images were captured across rivers and coastal 
areas to ensure variation in lighting, water clarity, reflections and background complexity with 
additional public maritime samples added to increase object diversity. All data were uploaded 
to Roboflow, manually annotated and categorized into four classes: boat, floating object, 
structure, and aquatic plant. The final dataset was exported in YOLOv11 format and split into 
training (70%), validation (20%), and testing (10%) sets following standard machine learning 
practices.  

 

Figure 1 Image of labeled data set with class 

Source : Author’s Data, 2025 

The pretrained YOLOv11 model with COCO weights was selected as the baseline architecture 
due to its balance of detection accuracy and computational efficiency. Figure 1 show label 
trained image. Training was conducted in Python 3 using the PyTorch-based Ultralytics 
Framework.  

Hardware Configuration 

For real-time field deployment, the prototype systemwas deployed on an NVIDIA Jetson Orin 
NX 16GB platform with ZED 2i stereo camera (4mm lens) for depth-based perception. To 
support field level implementation, the complete hardware assembly was installed within an 
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IPX6 rated waterproof die cast enclosure and paired with an IPX6 marine LCD interface as 
shown in Fig. 2. Additionally, an external alarm strobe module was integrated to provide real-
time warning signals during obstacle detection event.  

System Architecture 

The system architecture comprises four primary layers: sensing, processing, decision and 
output. The sensing layer acquires real-time RGB and depth data using a ZED 2i stereo 
camera. The data is processed by an Jetson Orin NX running the optimized fine-tuned 
YOLOv11 model. In the decision layer, detections are evaluated based on bounding box 
confidence, distance estimation and predefined safety thresholds. When confidence and 
proximity criteria are met within 20 meter, the output layer triggers visual and alert notifications. 

 

 

 

 

 

 

 

     Figure 2  Prototype setup Figure 3  System architecture 

 Source : Author’s Data, 2025  Source : Author’s Data, 2025 

The output/alert layer consists of a marine-grade IPX6 LCD module for real-time visualization 
and a high-intensity alarm strobe module for hazard warning. All components including the 
Jetson module and camera interface are housed within an IPX6-rated waterproof enclosure to 
ensure durability in outdoor and marine environments during field deployment. Figure 3 shows 
the system architecture for present work.  

Evaluation Protocol 

Model performance was evaluated on unseen test set (38 images) using COCO-standard 
metrics: mAP@0.5 (primary), mAP@0.5:0.95, Precision-Recall curves, F1-score and per-class 
Average Precision. Confusion matrices visualized false positive/negative patterns across 
confidence thresholds (0.1-0.9).  

Results and Discussion 

The performance of the fine-tuned YOLOv11 model was evaluated using multiple metrics, 
including mean Average Precision (mAP), precision–recall trends, confusion matrix analysis, 
and confidence-based scoring. Table 1 summarizes the results for both validation and test sets. 
Qualitative assessment using field trial images was also conducted to verify real-world 
inference performance. The following section presents and discusses these evaluation 
outcomes. 
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Table 1  Model Performance Summary 

Metric Validation Test 

mAP@0.5 0.7431 0.7561 

mAP@0.5:0.95 0.424 0.4387 

Precision 0.8088 0.7988 

Recall 0.6997 0.6586 

F1-score 0.7503 0.722 

Optimal confidence threshold 0.446 0.446 

Source : Author’s Data, 2025 

Confusion Matrix Interpretation 

The normalized confusion matrix (Fig. 4) demonstrates that the model performs well across 
multiple classes with particularly strong detection accuracy for plant and objects achieving true 
classification rates of 0.87 and 0.83, respectively. The boat class also exhibits a relatively high 
correct prediction rate of 0.75 indicating stable generalization toward dynamic floating 
obstacles. 

 

 

 

 

 

 

 

 

 

Figure 4 Confusion matrix normalized                       Figure 5 Precision-Recall curve 

Source : Author’s Data, 2025  Source : Author’s Data, 2025 

In contrast, the structure class shows a lower correct prediction value of 0.55, highlighting 
difficulty in differentiating man-made structures (e.g., bridges, piers, retaining walls) from the 
background. This challenge is consistent with findings in other marine vision studies where 
background–structure similarity and occlusion reduce detection precision (Kim et al., 2022). 
The most frequent misclassification occurred between structure (0.45) and boat (0.25) likely 
due to environmental factors such as reflections, water turbulence and illumination variation 
which have been extensively identified as key failure points in aquatic perception systems. 
These observations confirm that aquatic environments introduce higher visual ambiguity 
compared to terrestrial datasets.  
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Precision-Recall and Confidence-Based Behavior 

The precision–recall curve demonstrated stable behavior across most classes with the overall 
testing mAP@0.5 reaching 0.7561 indicating high object-level consistency as shown in Fig. 5. 
The F1-Confidence curve (see Fig. 6a) identified the optimal operational confidence threshold 
at 0.446 with an F1-Score of 0.72 represent the best trade-off between precision and recall 
when deployed on the NVIDIA Jetson Orin NX. 

Conversely, Fig.6(b) show the precision-confidence curve peaked at 1.00 precision at 0.925 
confidence confirming that higher confidence thresholds suppress false positives but at the 
cost of increased missed detections as. Similarly, the recall-confidence curve demonstrated a 
gradual decline under increasing thresholds validating that the model becomes more 
conservative as confidence filtering increases. These behaviors support the selection of a 
dynamic confidence threshold strategy during real-time deployment particularly when 
environmental visibility changes. 

 

 

 

 

 

 

 

 

 

                             

(a)                                                                             (b) 

Figure 6 Confidence curve a) F1-Confidence and b) Precision-Confidence 

Source : Author’s Data, 2025 

Qualitative Detection Results 

Inference sample in Fig. 7(a-d) demonstrated that the model successfully identified multiple 
water-borne and structural features including moving boats at different distance and scales, 
aquatic plant, stationary marine navigational buoy, bridge, docks, and pier structure. Detection 
confidence remained stable even under challenging conditions such as reflections, shadows 
and variable backgrounds. Minor duplication in bounding boxes occurred in dense spatial 
regions especially where multiple objects appeared close to one another or were partially 
occluded. 
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(a)                                                                                (b) 

 

 

 

 

 

 

 

 

                                       (c)                                                                                   (d) 

Figure 7 Detection of a)brige and structure, b)pier structure, c) boat and d) moving boats                
and static structure 

Source : Author’s Data, 2025 

Overall, the fine-tuned YOLOv11 model demonstrated strong potential for real-time water 
surface obstacle detection, achieving reliable mAP, F1-Score and precision-recall dynamics. 
While class confusion was observed between background and structure categories, the 
integration of stereo depth sensing and adaptive thresholding strategies is expected to further 
enhance reliability during field deployment. The results confirm that the model is suitable for 
embedded execution on the Jetson Orin NX platform and capable of supporting maritime 
navigation and safety-alerting applications in inland waterways and near-shore environments. 

Conclusion 

This study demonstrates that YOLOv11 is a viable real-time perception model for water surface 
obstacle detection. The system achieved strong results with mAP@0.5 = 0.7561 and 
demonstrated stable real-time performance during field deployment. Qualitative testing 
confirmed that the model was capable of detecting critical waterway obstacle and hazards 
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under varying environmental condition thus show its potential for integration into maritime 
navigation system, environmental monitoring and early-warning collision-avoidance systems. 
While performance was strong for the plant, boat and objects classes, structural objects 
showed higher misclassification due to visual similarity with background regions and 
environmental reflections. Future work will address these limitations through expanding the 
dataset including integration of multimodal sensing such as LiDAR and thermal infrared 
imaging. 
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