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Abstract 

Introduction/Main Objectives: Vehicle suspension systems are essential for maintaining ride comfort 
and stability. Conventional passive systems often fail to adapt to varying road conditions, leading to 
compromises in performance. Artificial Intelligence (AI), particularly Neural Networks (NN), offers a 
promising solution for modelling nonlinear dynamics and enabling adaptive control in suspension 
systems. The main objectives are to apply AI techniques using Neural Networks for optimizing 
suspension performance, to model and analyze a two-degree-of-freedom (2DOF) vertical body vibration 
system based on a quarter-car model and to improve ride comfort and stability by minimizing body 
acceleration and tire load variations. 

Background Problems: Traditional suspension systems lack adaptability and struggle to balance 
comfort with handling. Road irregularities introduce nonlinear vibrations that passive systems cannot 
effectively mitigate. This creates a need for intelligent, real-time control strategies. 

Research Methods: A two-degree-of-freedom (2DOF) quarter-car model was developed to represent 
the dynamic interaction between the sprung and unsprung masses. Simulation data were generated 
under various road excitation conditions to capture the system’s response to real-world disturbances. A 
feedforward neural network was then trained using this data to predict optimal suspension responses, 
enabling adaptive control strategies. Finally, the performance of the AI-based suspension system was 
compared with that of a conventional passive suspension system to evaluate improvements in ride 
comfort and stability. 

Finding/Results: The neural network successfully learned complex nonlinear relationships within 
suspension dynamics. AI-based control strategies demonstrated superior performance in reducing body 
acceleration and maintaining tire contact compared to passive systems, resulting in improved ride 
quality. 

Conclusion: AI-driven suspension systems using Neural Networks provide an effective framework for 
real-time vibration control. This approach enhances comfort and stability, paving the way for next-
generation intelligent vehicles. 

________________________________________________________________________________ 

Keywords: Artificial intelligence (AI), neural networks (NN), automotive suspension system, 
vertical body vibration, vibration reduction. 
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Introduction  

Vehicle vertical dynamics refers to the study of motion and forces acting on a vehicle in the 
vertical direction, primarily influenced by road irregularities, suspension characteristics, and 
tire compliance. This domain is critical for ensuring ride comfort, handling stability, and 
passenger safety. When a vehicle traverses uneven surfaces, disturbances such as bumps 
and potholes generate vertical excitations that propagate through the suspension system to 
the chassis and passenger compartment. These excitations lead to vibrations, which, if not 
properly controlled, can degrade ride quality, increase driver fatigue, and accelerate 
component wear (Garcia-Pozuelo et al., 2014). The suspension system plays a vital role in 
mitigating these vibrations by absorbing and dissipating energy, maintaining tire contact with 
the road, and isolating the vehicle body from harsh impacts. However, suspension dynamics 
are complex and exhibit nonlinear behaviors due to varying loads, damping characteristics, 
and road conditions (Ka’ka et al., 2023). Traditional suspension systems often rely on passive 
components such as springs and dampers, which provide limited adaptability to changing 
conditions. Consequently, modern research emphasizes semi-active and active suspension 
systems that can adjust damping forces in real time to improve comfort and stability (Du, Li, & 
Ning, 2024). 

Vertical dynamics modeling is commonly approached using simplified representations such as 
the quarter-car model, which captures the essential behavior of the sprung and unsprung 
masses connected by suspension elements (Chitale, Patil, & Pathan, 2023). This model helps 
analyze parameters like suspension stiffness, damping, and tire compliance, which 
significantly influence vertical acceleration and vibration transmission. Studies have shown that 
optimizing these parameters can reduce vertical acceleration, thereby enhancing ride comfort 
and safety (Bezabh et al., 2023). Road irregularities, including speed bumps and potholes, 
introduce additional challenges to vertical dynamics. Improperly designed road features can 
cause excessive vibrations, loss of tire grip, and even structural damage to vehicles (Garcia-
Pozuelo et al., 2014). Therefore, understanding the interaction between road geometry, vehicle 
speed, and suspension characteristics is essential for both vehicle design and infrastructure 
planning. Recent advancements in control strategies, such as fuzzy logic, neural networks, 
and sliding mode control, have been applied to suspension systems to address nonlinearities 
and uncertainties inherent in vertical dynamics (Du et al., 2024). These approaches aim to 
achieve an optimal balance between ride comfort and road holding, which is particularly 
important for autonomous and electric vehicles where noise vibration harshness (NVH) 
performance is a key design criterion (Deubel, Schneider, & Prokop, 2025). 

Active suspension systems controlled by algorithms such as Proportional-Integral-Derivative 
(PID) regulate suspension actuators to minimize body displacement and acceleration, 
improving vibration isolation and road holding. However, traditional PID controllers assume 
linearity and fixed gains, which limits adaptability under varying loads and road conditions 
(Emam, 2015). Recent studies have demonstrated that PID-based active suspension systems 
can reduce body acceleration by over 90% compared to passive systems, significantly 
enhancing ride quality (Parvez, Chauhan, & Srivastava, 2024). Modified PID structures and 
hybrid approaches, such as PID combined with Sliding Mode Control (PID-SMC), further 
improve performance by addressing nonlinearities and uncertainties in suspension dynamics 
(Nguyen, 2023). These advancements enable real-time vibration control, ensuring stability and 
comfort even under random road excitations. Despite limitations in adaptability, PID remains a 
widely used baseline due to its simplicity and effectiveness, often serving as a foundation for 
advanced adaptive and intelligent control strategies. This conventional PID controller have 
several limitations when applied to vehicle suspension systems. Firstly, it operates under the 
assumption of system linearity, whereas suspension dynamics are inherently nonlinear due to 
factors such as road irregularities, load variations, and tire behavior. Secondly, PID controllers 
rely on fixed proportional, integral, and derivative gains, which are typically tuned for a specific 
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operating condition. This becomes problematic because suspension systems encounter 
diverse scenarios involving varying loads, speeds, and terrains. Lastly, PID controllers exhibit 
poor adaptability, making them ineffective in responding to real-time changes such as sudden 
bumps or dynamic weight shifts, which are common in practical driving environments. 

Neural Network (NN)-based control strategies have emerged as a promising solution to 
overcome these limitations by leveraging their ability to approximate nonlinear functions and 
adapt to dynamic environments. NN controllers can learn complex relationships between 
suspension parameters and vehicle responses, enabling real-time optimization of damping and 
stiffness. Studies have shown that NN-based active suspension systems outperform PID-
controlled systems in reducing body acceleration, suspension deflection, and tire load under 
random road excitations (Kalaivani, Sudhagar, & Lakshmi, 2016). Adaptive NN controllers, 
such as radial basis function networks and multilayer perceptron’s, have been successfully 
applied to estimate unknown dynamics and compensate for uncertainties, ensuring robust 
performance even under actuator saturation and parameter variations (Zhao et al., 2016; 
Ghahremani et al., 2018). Recent advancements integrate NN with hybrid approaches like 
sliding mode control and reinforcement learning, achieving superior vibration suppression and 
improved ride comfort without compromising road holding (Dridi, Hamza, & Ben Yahia, 2023). 
Furthermore, digital twin technology combined with NN enables predictive and adaptive 
suspension control, enhancing comfort by up to 8.46% compared to PID methods (Qiu et al., 
2025). These developments highlight NN’s potential for intelligent suspension systems, 
offering adaptability, robustness, and improved performance in complex, nonlinear vehicle 
dynamics. 

This paper investigates a two-degree-of-freedom (2DOF) vertical body dynamics model to 
analyze vehicle vibration behaviours under road disturbances. An active suspension system is 
employed to enhance ride comfort and stability compared to conventional passive 
suspensions. Initially, a PID controller is implemented to regulate suspension actuator forces, 
reducing body displacement and acceleration. Artificial intelligent (AI) approach using neural 
network (NN) strategy is introduced that learns from the PID controller’s behaviour and 
progressively improves performance through adaptive learning. The NN controller 
approximates the nonlinear dynamics of the suspension system and adjusts control actions in 
real time, ensuring better vibration suppression under diverse road profiles. Simulation results 
demonstrate that the NN-based controller significantly reduces vertical acceleration and 
suspension deflection compared to PID, achieving superior ride comfort and road holding. This 
hybrid approach leverages the simplicity of PID for initial tuning and the adaptability of NN for 
continuous optimization, making it a promising solution for intelligent suspension systems. 

Research Methods 

The quarter car two-degree-of-freedom (2DOF) vertical body dynamics model represents the 
sprung mass, mb (vehicle body) and unsprung mass (wheel assembly) connected through 
suspension and tire elements (Figure 1). This simplified model is widely used for analyzing ride 
comfort and suspension performance. The derivation of the 2DOF vertical body dynamics 
model is based on several simplifying assumptions to ensure analytical tractability and focus 
on ride comfort analysis. First, the suspension system is assumed to exhibit linear spring and 
damper characteristics, meaning the stiffness and damping forces vary proportionally with 
displacement and velocity, respectively. Second, the model considers only small vertical 
displacements, which is a valid approximation for comfort analysis under normal driving 
conditions where suspension travel remains within its operational range. Finally, lateral and 
longitudinal dynamics are neglected, allowing the study to concentrate exclusively on vertical 
motion and vibration behavior without the complexity introduced by steering or acceleration 
effects. The modeling of the 2DOF vertical body dynamics is implemented in MATLAB/Simulink 
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to simulate vehicle suspension behavior under various road excitations. The system consists 
of two masses: the sprung mass representing the vehicle body and the unsprung mass 
representing the wheel assembly. These masses are connected through suspension elements 
characterized by stiffness and damping, while the tire stiffness links the unsprung mass to the 
road surface. The governing differential equations derived from Newton’s second law are 
formulated for both masses, incorporating suspension forces, damping forces, and active 
control input. These equations are then converted into a state-space representation and 
implemented in Simulink using blocks for integrators, gains, and summation points. Road 
disturbances such as step, sine, and random profiles are applied as input signals to the road 
displacement block. The active suspension force is modeled as an external input, allowing 
integration of different control strategies such as PID and neural network controllers. 
Simulation outputs include body displacement, body acceleration, suspension deflection, and 
tire load, which are analyzed to evaluate ride comfort and stability. The model is validated by 
comparing passive and active suspension responses under identical road conditions. The 
derivations of the equations of motions using forces, 

𝐹𝑚𝑏 = 𝑚𝑏𝑧̈𝑏             (1) 

𝐹𝑐𝑠 = 𝑐𝑠(𝑧̇𝑤 − 𝑧̇𝑏)             (2) 

𝐹𝑘𝑠 = 𝑘𝑠(𝑧𝑤 − 𝑧𝑏)            (3) 

𝐹𝑚𝑡 = 𝑚𝑡𝑧̈𝑤             (4) 

𝐹𝑘𝑡 = 𝑘𝑡(𝑧𝑟 − 𝑧𝑤)             (5)  

Where, 

 Fmb  = force due to mass of vehicle body 

 Fcs  = force of the suspension damping 

 Fks = force of the suspension stiffness 

 Fmt = force due to the mass of the wheel 

 mb = mass of the vehicle body 

cs = suspension damping coefficient 

ks = suspension spring stiffness 

zb = vertical displacement of the vehicle body 

mt = mass of the wheel 

kt = tire stiffness 

zw = vertical displacement of the wheel 

zr = road irregularities 
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Figure 1. Quarter car vertical dynamic 2DOF model 
Source: Author’s Work, 2025. 

Using Newton’s 2nd Law, 

𝐹𝑚𝑏 = 𝐹𝑐𝑠 + 𝐹𝑘𝑠               (6) 

𝑚𝑏𝑧̈𝑏 = 𝐹𝑐𝑠 + 𝐹𝑘𝑠           (7) 

𝑧̈𝑏 =
1

𝑚𝑏
(𝐹𝑐𝑠 + 𝐹𝑘𝑠)           (8) 

𝑚𝑏𝑧̈𝑏 = 𝑐𝑠(𝑧̇𝑤 − 𝑧̇𝑏) + 𝑘𝑠(𝑧𝑤 − 𝑧𝑏)         (9) 

𝐹𝑚𝑡 = −𝐹𝑐𝑠 − 𝐹𝑘𝑠 + 𝐹𝑘𝑟                      (10) 

𝑚𝑡𝑧̈𝑤 = −𝐹𝑐𝑠 − 𝐹𝑘𝑠 + 𝐹𝑘𝑟                       (11) 

𝑧̈𝑤 =
1

𝑚𝑡
(−𝐹𝑐𝑠 − 𝐹𝑘𝑠 + 𝐹𝑘𝑟)                                     (12) 

𝑚𝑡𝑧̈𝑤 = −𝑐𝑠(𝑧̇𝑤 − 𝑧̇𝑏) − 𝑘𝑠(𝑧𝑤 − 𝑧𝑏) + 𝑘𝑡(𝑧𝑟 − 𝑧𝑤)                   (13) 

Table 1. Vehicle parameters 

 Parameter Value 

1. 
2. 
3. 
4. 
5. 

mb 
cs 
ks 
mt 
kt 

454.5 kg 
2400 Ns/m 
22000 N/m 
45.45 kg 

17600 N/m 

The Simulink models for Eqn. (2), (3) and (9) are, 
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Figure 2. Simulink model for Fks 

Source: Author’S work, 2025. 

 

Figure 3. Simulink model for Fcs 

Source: Author’S work, 2025. 

 

 

Figure 4. Simulink model for vehicle body vertical displacement 
Source: Author’S work, 2025. 
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The Simulink models for Eqn. (5) and (13) are, 

 

Figure 5. Simulink model for Fkt 

Source: Author’S work, 2025. 

 

Figure 6. Simulink model for wheel vertical displacement 
Source: Author’S work, 2025. 
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Combining the models with the introduction of active suspension force, Fa, 

 

Figure 7. 2DOF model 
Source: Author’S work, 2025. 

Further simplify the model into subsystem, 

https://conference.asia.ac.id/index.php/ecosia/


ECOSIA 2025 | 222 

  715  https://conference.asia.ac.id/index.php/ecosia/ 

 

Figure 8. 2DOF model with subsystem 
Source: Author’S work, 2025. 

To evaluate the performance of the 2DOF vertical body dynamics model and its control 
strategies, three types of road input excitations are considered: step, sine, and random road 
profiles. The step input (Figure 9) simulates a sudden change in road elevation, such as 
encountering a speed bump or curb (0.05 m), and is used to assess the suspension’s transient 
response and stability. The sine input (Figure 10) represents periodic road undulations, 
enabling analysis of the system’s frequency response and resonance characteristics under 

harmonic excitation (0.05 m at frequency  rad/s). Finally, the random input (Figure 11) models 
real-world road irregularities based on ISO road roughness standards (-0.05 to 0.05 m), 
providing a realistic scenario for evaluating ride comfort and vibration suppression. These 
inputs are applied to the road displacement term 𝑧𝑟(𝑡)in the unsprung mass equation, and 
simulations are performed using MATLAB/Simulink. 

The application of a PID controller in an active suspension system aims to improve ride comfort 
and stability by minimizing body displacement and acceleration. The PID controller (Figure 12) 
is designed based on the 2DOF vertical body dynamics model, where the control input is the 
active suspension force applied between the sprung and unsprung masses. The methodology 
begins with defining the control objective, which is to maintain the vehicle body position close 
to a reference level while reducing vibrations caused by road disturbances. The error signal is 
computed as the difference between the desired body displacement and the actual 
displacement. The PID controller generates the control force using three components: 
proportional action to reduce instantaneous error, integral action to eliminate steady-state 
error, and derivative action to anticipate future error trends. Tuning of PID gains (𝐾𝑝, 𝐾𝑖, 𝐾𝑑) is 

performed using methods such as Ziegler–Nichols or optimization algorithms to achieve a 
balance between ride comfort and road holding. The controller is implemented in 
MATLAB/Simulink, where the active suspension force block receives the PID output. 
Simulations are conducted under step, sine, and random road inputs to evaluate system 
performance in terms of body acceleration, suspension deflection, and tire load. Comparative 
analysis with passive suspension highlights the effectiveness of PID control in vibration 
suppression. 
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Figure 9. Step input parameters 

Source: Author’S work, 2025. 

 

 

Figure 10. Sine input parameters 
Source: Author’S work, 2025. 

 

https://conference.asia.ac.id/index.php/ecosia/


ECOSIA 2025 | 222 

  717  https://conference.asia.ac.id/index.php/ecosia/ 

 

Figure 11. Random input parameters. 
Source: Author’S work, 2025. 

 

 

Figure 12. PID parameters 
Source: Author’S work, 2025. 
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A Neural Network (NN) controller is introduced to the active suspension system to enhance 
vibration suppression by learning (Figure 13) from the optimal performance of a tuned PID 
controller. Initially, the 2DOF vertical body dynamics model is implemented in 
MATLAB/Simulink, and a PID controller is designed and tuned using optimization techniques 
such as Ziegler–Nichols or Particle Swarm Optimization to achieve the best trade-off between 
ride comfort and road holding. The system is simulated under various road excitations (step, 
sine, and random profiles), and performance metrics such as body acceleration, suspension 
deflection, and tire load are recorded. These optimal PID responses serve as training data for 
the NN, which is structured as a feedforward network with backpropagation learning. The NN 
learns the nonlinear mapping between road input, system states, and optimal control force 
generated by the PID controller. Once trained, the NN replaces the PID controller in the active 
suspension system, providing adaptive control that can handle nonlinearities and varying 
operating conditions. The NN-based controller is validated through simulations under the same 
road profiles, and its performance is compared against both passive and PID-controlled 
suspensions. Key evaluation criteria include vibration reduction, adaptability, and 
computational efficiency. 

 

Figure 13. NN training 

Source: Author’S work, 2025. 
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The comparative analysis is conducted using a 2DOF vertical body dynamics model 
implemented in MATLAB/Simulink. Three suspension configurations are modeled: Passive 
suspension, consisting of fixed spring and damper elements; Active suspension with PID 
control, where an optimized PID controller generates the active force to minimize body 
displacement and acceleration; and Active suspension with Neural Network (NN) control, 
which learns from the optimal performance data of the PID controller and adapts to nonlinear 
dynamics. Each configuration is subjected to identical road excitations, including step input (to 
evaluate transient response), sine input (to analyze frequency response), and random input 
(to simulate real-world road irregularities). Performance metrics include body acceleration, 
suspension deflection, and tire load, which are recorded and compared across all 
configurations. MATLAB/Simulink scopes and data logging are used to capture time-domain 
responses, while frequency-domain analysis is performed for sinusoidal inputs. Statistical 
measures such as RMS acceleration and peak displacement are computed to quantify ride 
comfort and stability. The results are presented in comparative plots and tables, highlighting 
improvements achieved by active suspension systems over passive suspension, and 
demonstrating the superior adaptability and vibration suppression capability of NN-based 
control compared to PID. 

Results 

The NN training results are shown in Figures 14 and 15. The Neural Network (NN) training for 
active suspension control achieved its best validation performance at epoch 6, where the Mean 
Squared Error (MSE) reached its minimum value, indicating optimal learning and 
generalization. This early convergence demonstrates that the NN effectively captured the 
nonlinear dynamics of the suspension system using the training data derived from the PID 
controller’s optimal performance. Additionally, the regression analysis between the predicted 
outputs and the target values yielded a correlation coefficient (R) of 0.99885, which is very 
close to 1. This high R-value confirms an excellent fit between the NN predictions and the 
desired control force, signifying that the network accurately learned the underlying relationship 
and can reliably reproduce optimal control actions. These results validate the robustness and 
accuracy of the NN-based controller, making it suitable for real-time implementation in active 
suspension systems to improve ride comfort and vibration suppression. 

 

Figure 14. NN training performance 
Source: Author’S work, 2025. 
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Figure 15. NN training regression 

Source: Author’S work, 2025. 

The simulation results under a step road input demonstrate that the Neural Network (NN)-
controlled active suspension significantly outperforms both passive suspension and PID-
controlled active suspension in reducing vertical body vibration (Figure 16). For the passive 
system, the body displacement exhibited large oscillations following the step disturbance, while 
the PID controller reduced these oscillations but still showed noticeable fluctuations. In 
contrast, the NN-based controller achieved superior damping performance, maintaining body 
displacement fluctuations at less than 0.03 m throughout the transient response. This 
improvement indicates that the NN effectively learned and optimized control actions beyond 
the limitations of PID, providing faster settling time and minimal overshoot. The enhanced 
vibration suppression translates into improved ride comfort and stability, validating the 
effectiveness of AI-based control strategies for active suspension systems. 

Under a sine road excitation, the Neural Network (NN)-controlled active suspension closely 
imitates the performance of the optimally tuned PID controller while outperforming the passive 
suspension system (Figure 17). The passive suspension exhibited significant oscillations, 
resulting in poor ride comfort and stability. In contrast, both PID and NN controllers-maintained 
body displacement within a narrow range, with the NN achieving fluctuations between -0.01 m 
and 0.01 m, which is substantially better than the passive system. This demonstrates that the 
NN successfully learned the PID’s control strategy and further optimized it to handle nonlinear 
dynamics effectively. NN’s ability to maintain minimal oscillation under periodic disturbances 
highlights its robustness and adaptability, ensuring improved vibration suppression and 
enhanced ride comfort compared to conventional methods. 
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When subjected to random road excitation, the Neural Network (NN)-controlled active 
suspension demonstrated superior performance compared to both passive suspension and 
PID-controlled active suspension (Figure 18). The passive system exhibited large and irregular 
fluctuations, compromising ride comfort and stability. The PID controller improved vibration 
suppression but still showed noticeable variations under unpredictable road conditions. In 
contrast, the NN-based controller-maintained body displacement within a narrow range of -
0.03 m to 0.03 m, effectively reducing oscillations and ensuring smoother ride quality. This 
improvement highlights the NN’s ability to adapt to nonlinear dynamics and optimize control 
actions in real time, even under highly variable inputs. The results confirm that NN-based active 
suspension provides enhanced vibration isolation and better overall vertical dynamic 
performance compared to traditional control methods. 

 

Figure 16. Comparison performance for step input 
Source: Author’S work, 2025. 
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Figure 17. Comparison performance for sine input 
Source: Author’S work, 2025. 
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Figure 18. Comparison performance for random input 
Source: Author’S work, 2025. 

Discussion 

The simulation results clearly indicate that active suspension equipped with a PID controller 
significantly improves vertical dynamic performance compared to a conventional passive 
suspension system. Passive suspensions rely solely on fixed spring and damper 
characteristics, which cannot adapt to varying road conditions, resulting in higher body 
acceleration and greater suspension deflection under disturbances such as bumps or uneven 
surfaces. In contrast, the PID-controlled active suspension introduces an additional control 
force that dynamically adjusts based on the error between the desired and actual body position. 
This adaptive capability enables the system to effectively suppress vibrations and maintain 
vehicle stability. Performance metrics such as root mean square (RMS) body acceleration and 
peak displacement demonstrate substantial reductions when using PID control, translating into 
enhanced ride comfort and improved road holding. Furthermore, the PID controller’s derivative 
action anticipates changes in road input, reducing overshoot and settling time compared to 
passive systems. Although PID control assumes linearity and may require retuning for different 
operating conditions, its simplicity and effectiveness make it a practical solution for improving 
vertical dynamics in active suspension systems. 
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The integration of a Neural Network (NN) controller that learns from the optimal performance 
of a PID-controlled active suspension demonstrates a significant advancement in vibration 
suppression and adaptability. While PID control improves vertical dynamics compared to 
passive suspension, its fixed gains and linear assumptions limit performance under varying 
road conditions and nonlinear behaviors. By training the NN on data generated from an 
optimally tuned PID controller, the NN inherits baseline performance while gaining the ability 
to approximate complex nonlinear relationships and adapt to dynamic environments. 
Simulation results show that the NN-based controller achieves lower body acceleration and 
suspension deflection than PID, particularly under random road profiles and high-frequency 
disturbances. This improvement is attributed to NN’s capability to continuously optimize control 
actions without manual retuning, ensuring robust performance across diverse operating 
conditions. Furthermore, the NN reduces overshoot and settling time more effectively than PID, 
enhancing ride comfort and stability. Although NN implementation requires additional 
computational resources and training time, its superior adaptability and optimization potential 
make it a promising solution for next-generation intelligent suspension systems. 

Active suspension systems controlled by Neural Networks (NN) outperform PID-based 
systems primarily due to their ability to handle nonlinearities, adapt to changing conditions, 
and optimize control actions in real time. PID controllers operate on fixed proportional, integral, 
and derivative gains, which are tuned for specific operating conditions. This makes PID 
effective in predictable environments but less robust under varying loads, speeds, and road 
profiles. In contrast, NN controllers learn complex nonlinear relationships between system 
states and control forces, enabling them to approximate optimal control strategies beyond the 
limitations of linear assumptions. By training on data from an optimally tuned PID controller, 
the NN inherits baseline performance while gaining adaptability to dynamic scenarios such as 
sudden bumps or random road excitations. Simulation studies consistently show that NN-
based control reduces body acceleration, suspension deflection, and tire load more effectively 
than PID, resulting in improved ride comfort and stability. Additionally, NN controllers exhibit 
faster response, lower overshoot, and better vibration suppression across a wide frequency 
range. Although NN requires more computational resources and training time, its superior 
adaptability and optimization capabilities make it a more advanced and reliable solution for 
modern active suspension systems.  

Conclusion 

The study demonstrates that active suspension systems significantly enhance vehicle vertical 
dynamic performance compared to conventional passive suspensions, with Neural Network 
(NN)-based control offering the most substantial improvement. While PID-controlled active 
suspension reduces body acceleration and suspension deflection relative to passive systems, 
its performance is constrained by fixed gains and linear assumptions, limiting adaptability 
under varying road conditions. In contrast, NN controllers, trained on optimal PID performance 
data, leveraged artificial intelligence (AI) to learn complex nonlinear dynamics and optimize 
control actions in real time. This capability enables superior vibration suppression, improved 
ride comfort, and enhanced road holding across diverse operating scenarios, including random 
road profiles and high-frequency disturbances. The application of AI through NN in active 
suspension systems represents a transformative approach, providing adaptability, robustness, 
and intelligent optimization that traditional control methods cannot achieve. These findings 
highlight the potential of AI-driven suspension technologies as a key enabler for next-
generation vehicles, particularly in autonomous and electric platforms where comfort and 
stability are critical design priorities. 
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