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Introduction/Main Objectives: Vehicle suspension systems are essential for maintaining ride comfort
and stability. Conventional passive systems often fail to adapt to varying road conditions, leading to
compromises in performance. Artificial Intelligence (Al), particularly Neural Networks (NN), offers a
promising solution for modelling nonlinear dynamics and enabling adaptive control in suspension
systems. The main objectives are to apply Al techniques using Neural Networks for optimizing
suspension performance, to model and analyze a two-degree-of-freedom (2DOF) vertical body vibration
system based on a quarter-car model and to improve ride comfort and stability by minimizing body
acceleration and tire load variations.

Background Problems: Traditional suspension systems lack adaptability and struggle to balance
comfort with handling. Road irregularities introduce nonlinear vibrations that passive systems cannot
effectively mitigate. This creates a need for intelligent, real-time control strategies.

Research Methods: A two-degree-of-freedom (2DOF) quarter-car model was developed to represent
the dynamic interaction between the sprung and unsprung masses. Simulation data were generated
under various road excitation conditions to capture the system’s response to real-world disturbances. A
feedforward neural network was then trained using this data to predict optimal suspension responses,
enabling adaptive control strategies. Finally, the performance of the Al-based suspension system was
compared with that of a conventional passive suspension system to evaluate improvements in ride
comfort and stability.

Finding/Results: The neural network successfully learned complex nonlinear relationships within
suspension dynamics. Al-based control strategies demonstrated superior performance in reducing body
acceleration and maintaining tire contact compared to passive systems, resulting in improved ride
quality.

Conclusion: Al-driven suspension systems using Neural Networks provide an effective framework for
real-time vibration control. This approach enhances comfort and stability, paving the way for next-
generation intelligent vehicles.

Keywords: Artificial intelligence (Al), neural networks (NN), automotive suspension system,
vertical body vibration, vibration reduction.
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Introduction

Vehicle vertical dynamics refers to the study of motion and forces acting on a vehicle in the
vertical direction, primarily influenced by road irregularities, suspension characteristics, and
tire compliance. This domain is critical for ensuring ride comfort, handling stability, and
passenger safety. When a vehicle traverses uneven surfaces, disturbances such as bumps
and potholes generate vertical excitations that propagate through the suspension system to
the chassis and passenger compartment. These excitations lead to vibrations, which, if not
properly controlled, can degrade ride quality, increase driver fatigue, and accelerate
component wear (Garcia-Pozuelo et al., 2014). The suspension system plays a vital role in
mitigating these vibrations by absorbing and dissipating energy, maintaining tire contact with
the road, and isolating the vehicle body from harsh impacts. However, suspension dynamics
are complex and exhibit nonlinear behaviors due to varying loads, damping characteristics,
and road conditions (Ka'ka et al., 2023). Traditional suspension systems often rely on passive
components such as springs and dampers, which provide limited adaptability to changing
conditions. Consequently, modern research emphasizes semi-active and active suspension
systems that can adjust damping forces in real time to improve comfort and stability (Du, Li, &
Ning, 2024).

Vertical dynamics modeling is commonly approached using simplified representations such as
the quarter-car model, which captures the essential behavior of the sprung and unsprung
masses connected by suspension elements (Chitale, Patil, & Pathan, 2023). This model helps
analyze parameters like suspension stiffness, damping, and tire compliance, which
significantly influence vertical acceleration and vibration transmission. Studies have shown that
optimizing these parameters can reduce vertical acceleration, thereby enhancing ride comfort
and safety (Bezabh et al., 2023). Road irregularities, including speed bumps and potholes,
introduce additional challenges to vertical dynamics. Improperly designed road features can
cause excessive vibrations, loss of tire grip, and even structural damage to vehicles (Garcia-
Pozuelo et al., 2014). Therefore, understanding the interaction between road geometry, vehicle
speed, and suspension characteristics is essential for both vehicle design and infrastructure
planning. Recent advancements in control strategies, such as fuzzy logic, neural networks,
and sliding mode control, have been applied to suspension systems to address nonlinearities
and uncertainties inherent in vertical dynamics (Du et al., 2024). These approaches aim to
achieve an optimal balance between ride comfort and road holding, which is particularly
important for autonomous and electric vehicles where noise vibration harshness (NVH)
performance is a key design criterion (Deubel, Schneider, & Prokop, 2025).

Active suspension systems controlled by algorithms such as Proportional-Integral-Derivative
(PID) regulate suspension actuators to minimize body displacement and acceleration,
improving vibration isolation and road holding. However, traditional PID controllers assume
linearity and fixed gains, which limits adaptability under varying loads and road conditions
(Emam, 2015). Recent studies have demonstrated that PID-based active suspension systems
can reduce body acceleration by over 90% compared to passive systems, significantly
enhancing ride quality (Parvez, Chauhan, & Srivastava, 2024). Modified PID structures and
hybrid approaches, such as PID combined with Sliding Mode Control (PID-SMC), further
improve performance by addressing nonlinearities and uncertainties in suspension dynamics
(Nguyen, 2023). These advancements enable real-time vibration control, ensuring stability and
comfort even under random road excitations. Despite limitations in adaptability, PID remains a
widely used baseline due to its simplicity and effectiveness, often serving as a foundation for
advanced adaptive and intelligent control strategies. This conventional PID controller have
several limitations when applied to vehicle suspension systems. Firstly, it operates under the
assumption of system linearity, whereas suspension dynamics are inherently nonlinear due to
factors such as road irregularities, load variations, and tire behavior. Secondly, PID controllers
rely on fixed proportional, integral, and derivative gains, which are typically tuned for a specific
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operating condition. This becomes problematic because suspension systems encounter
diverse scenarios involving varying loads, speeds, and terrains. Lastly, PID controllers exhibit
poor adaptability, making them ineffective in responding to real-time changes such as sudden
bumps or dynamic weight shifts, which are common in practical driving environments.

Neural Network (NN)-based control strategies have emerged as a promising solution to
overcome these limitations by leveraging their ability to approximate nonlinear functions and
adapt to dynamic environments. NN controllers can learn complex relationships between
suspension parameters and vehicle responses, enabling real-time optimization of damping and
stiffness. Studies have shown that NN-based active suspension systems outperform PID-
controlled systems in reducing body acceleration, suspension deflection, and tire load under
random road excitations (Kalaivani, Sudhagar, & Lakshmi, 2016). Adaptive NN controllers,
such as radial basis function networks and multilayer perceptron’s, have been successfully
applied to estimate unknown dynamics and compensate for uncertainties, ensuring robust
performance even under actuator saturation and parameter variations (Zhao et al., 2016;
Ghahremani et al., 2018). Recent advancements integrate NN with hybrid approaches like
sliding mode control and reinforcement learning, achieving superior vibration suppression and
improved ride comfort without compromising road holding (Dridi, Hamza, & Ben Yahia, 2023).
Furthermore, digital twin technology combined with NN enables predictive and adaptive
suspension control, enhancing comfort by up to 8.46% compared to PID methods (Qiu et al.,
2025). These developments highlight NN’s potential for intelligent suspension systems,
offering adaptability, robustness, and improved performance in complex, nonlinear vehicle
dynamics.

This paper investigates a two-degree-of-freedom (2DOF) vertical body dynamics model to
analyze vehicle vibration behaviours under road disturbances. An active suspension system is
employed to enhance ride comfort and stability compared to conventional passive
suspensions. Initially, a PID controller is implemented to regulate suspension actuator forces,
reducing body displacement and acceleration. Artificial intelligent (Al) approach using neural
network (NN) strategy is introduced that learns from the PID controller’s behaviour and
progressively improves performance through adaptive learning. The NN controller
approximates the nonlinear dynamics of the suspension system and adjusts control actions in
real time, ensuring better vibration suppression under diverse road profiles. Simulation results
demonstrate that the NN-based controller significantly reduces vertical acceleration and
suspension deflection compared to PID, achieving superior ride comfort and road holding. This
hybrid approach leverages the simplicity of PID for initial tuning and the adaptability of NN for
continuous optimization, making it a promising solution for intelligent suspension systems.

Research Methods

The quarter car two-degree-of-freedom (2DOF) vertical body dynamics model represents the
sprung mass, m, (vehicle body) and unsprung mass (wheel assembly) connected through
suspension and tire elements (Figure 1). This simplified model is widely used for analyzing ride
comfort and suspension performance. The derivation of the 2DOF vertical body dynamics
model is based on several simplifying assumptions to ensure analytical tractability and focus
on ride comfort analysis. First, the suspension system is assumed to exhibit linear spring and
damper characteristics, meaning the stiffness and damping forces vary proportionally with
displacement and velocity, respectively. Second, the model considers only small vertical
displacements, which is a valid approximation for comfort analysis under normal driving
conditions where suspension travel remains within its operational range. Finally, lateral and
longitudinal dynamics are neglected, allowing the study to concentrate exclusively on vertical
motion and vibration behavior without the complexity introduced by steering or acceleration
effects. The modeling of the 2DOF vertical body dynamics is implemented in MATLAB/Simulink
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to simulate vehicle suspension behavior under various road excitations. The system consists
of two masses: the sprung mass representing the vehicle body and the unsprung mass
representing the wheel assembly. These masses are connected through suspension elements
characterized by stiffness and damping, while the tire stiffness links the unsprung mass to the
road surface. The governing differential equations derived from Newton’s second law are
formulated for both masses, incorporating suspension forces, damping forces, and active
control input. These equations are then converted into a state-space representation and
implemented in Simulink using blocks for integrators, gains, and summation points. Road
disturbances such as step, sine, and random profiles are applied as input signals to the road
displacement block. The active suspension force is modeled as an external input, allowing
integration of different control strategies such as PID and neural network controllers.
Simulation outputs include body displacement, body acceleration, suspension deflection, and
tire load, which are analyzed to evaluate ride comfort and stability. The model is validated by
comparing passive and active suspension responses under identical road conditions. The
derivations of the equations of motions using forces,

Fnp = mpZy (1)
Fos = cs(2y, — Zp) (2)
Fys = ks(zw — 2p) (3)
Fpe = myZ, (4)
Fyt = k(2 — z) (5)
Where,

Fop = force due to mass of vehicle body

Fe = force of the suspension damping

Fis = force of the suspension stiffness

Fou = force due to the mass of the wheel

mp = mass of the vehicle body

Cs = suspension damping coefficient

ks = suspension spring stiffness

Zp = vertical displacement of the vehicle body

m; = mass of the wheel

ke = tire stiffness

Zw = vertical displacement of the wheel

z = road irregularities
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Figure 1. Quarter car vertical dynamic 2DOF model
Source: Author’s Work, 2025.

Using Newton’s 2" Law,

Fp = Fos + Fis

myZp = Feg + Fys

.. 1

Zp = m_b(ch + Fis)

myZp = ¢5(Zy — Zp) + ks(2y — 2p)
Fpe = —Fes — Fis + Firr

meZy, = —Fg — Fig + Fir

.. 1
Zw =E(_ch_st+Fkr)

meZ,, = _CS(ZW - Zb) - ks(zw - Zb) + ke(zr — zy)

Table 1. Vehicle parameters

(6)
(7)
(8)
(9)
(10)
(11)

(12)

(13)

Parameter Value
1. mp 454.5 kg
2. Cs 2400 Ns/m
3. ks 22000 N/m
4, m 45.45 kg
5. ki 17600 N/m
The Simulink models for Egn. (2), (3) and (9) are,
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Figure 2. Simulink model for Fj;
Source: Author’S work, 2025.
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Figure 3. Simulink model for F,,
Source: Author’S work, 2025.
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Figure 4. Simulink model for vehicle body vertical displacement
Source: Author’S work, 2025.
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The Simulink models for Egn. (5) and (13) are,

zrfr
Fktfr

Figure 5. Simulink model for F,
Source: Author’S work, 2025.
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Figure 6. Simulink model for wheel vertical displacement
Source: Author’S work, 2025.
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Combining the models with the introduction of active suspension force, F,,

— zwfr
——p{ zwfrdot zbfr
bfrdot
(2 ) P Fa z
Fa
mb zbfrdotdot 1/4car zbfrdot
|
zbfr
zwfr
| zbfrdot -
(1) P zrfr
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g zwfrdot
mwfr zwfrdotdot 1/4car

Figure 7. 2DOF model
Source: Author’S work, 2025.

Further simplify the model into subsystem,
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Figure 8. 2DOF model with subsystem
Source: Author’S work, 2025.

To evaluate the performance of the 2DOF vertical body dynamics model and its control
strategies, three types of road input excitations are considered: step, sine, and random road
profiles. The step input (Figure 9) simulates a sudden change in road elevation, such as
encountering a speed bump or curb (0.05 m), and is used to assess the suspension’s transient
response and stability. The sine input (Figure 10) represents periodic road undulations,
enabling analysis of the system’s frequency response and resonance characteristics under
harmonic excitation (0.05 m at frequency zrad/s). Finally, the random input (Figure 11) models
real-world road irregularities based on ISO road roughness standards (-0.05 to 0.05 m),
providing a realistic scenario for evaluating ride comfort and vibration suppression. These
inputs are applied to the road displacement term z,(t)in the unsprung mass equation, and
simulations are performed using MATLAB/Simulink.

The application of a PID controller in an active suspension system aims to improve ride comfort
and stability by minimizing body displacement and acceleration. The PID controller (Figure 12)
is designed based on the 2DOF vertical body dynamics model, where the control input is the
active suspension force applied between the sprung and unsprung masses. The methodology
begins with defining the control objective, which is to maintain the vehicle body position close
to a reference level while reducing vibrations caused by road disturbances. The error signal is
computed as the difference between the desired body displacement and the actual
displacement. The PID controller generates the control force using three components:
proportional action to reduce instantaneous error, integral action to eliminate steady-state
error, and derivative action to anticipate future error trends. Tuning of PID gains (K, K;, Ky) is
performed using methods such as Ziegler—Nichols or optimization algorithms to achieve a
balance between ride comfort and road holding. The controller is implemented in
MATLAB/Simulink, where the active suspension force block receives the PID output.
Simulations are conducted under step, sine, and random road inputs to evaluate system
performance in terms of body acceleration, suspension deflection, and tire load. Comparative
analysis with passive suspension highlights the effectiveness of PID control in vibration
suppression.
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Block Parameters: Step

Step
Output a step.

Main  Signal Attributes
Step time:
Initial value:

0

Final value:
0.05
Sample time:
0.01
[] Interpret vector parameters as 1-D

[« Enable zero-crossing detection

J Cancel Help Apply

Figure 9. Step input parameters
Source: Author’S work, 2025.

Block Parameters: Sine pi

Sine Wave
Output a sine wave: ,

O(t) = Amp*Sin(Freq*t+Phase) + Bias

Sine type determines the computational technique used. The parameters
in the two types are related through:

Samples per period = 2*pi / (Frequency * Sample time)
% Number of offset samples = Phase * Samples per period / (2*pi)

Use the sample-based sine type if numerical problems due to running for
| large times (e.g. overflow in absolute time) occur.

Parameters
J Sine type: Time based -
{ Time (t): Use simulation time o

Amplitude:
|0.05

7 Bias: I

10

o

Frequency (rad/sec):

1 [pi0

Phase (rad): I
0

4 Sample time:
4 (0.01 30

7 ] Interpret vector parameters as 1-D

J Cancel Help Apply -

Figure 10. Sine input parameters
Source: Author’S work, 2025.
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Block Parameters: Uniform Random Number

Uniform Random Number

Qutput a uniformly distributed random signal. Output is repeatable for a
given seed.

Parameters
Minimum:
XE 5
Maximum:
0.05
Seed:
0
Sample time:
0.1 ]
[] Interpret vector parameters as 1-D

J Cancel Help Apply

Figure 11. Random input parameters.
Source: Author’S work, 2025.

Block Parameters: PID Controller

PID 1dof (mask) (link)
This block implements continuous- and discrete-time PID control algorithms and Includes advanced features such as anti-windup,

external reset, and signal tracking. You can tune the PID gains automatically using the 'Tune...' button (requires Simulink Control
Design).
Controller: PID = Form: Parallel

Time domain: Discrete-time settings

(®) Continuous-time

() Discrete-time

Sample time (-1 for inherited): -1

¥ Compensator formula

P+rtep YN
o 1+ N
8

Main  Initialization  Output Saturation  Data Types  State Attributes
Controller parameters

Source: internal
Proportional (P): 100000
Integral (I): 10000
Derivative (D): 1000

Use filtered derivative
Filter coefficient (N): 1000

Automated tuning
Select tuning method: Transfer Function Based (PID Tuner App) - Tune...

[ Enable zero-crossing detection

Cancel Help Apply

Figure 12. PID parameters
Source: Author’S work, 2025.
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A Neural Network (NN) controller is introduced to the active suspension system to enhance
vibration suppression by learning (Figure 13) from the optimal performance of a tuned PID
controller. Initially, the 2DOF vertical body dynamics model is implemented in
MATLAB/Simulink, and a PID controller is designed and tuned using optimization techniques
such as Ziegler—Nichols or Particle Swarm Optimization to achieve the best trade-off between
ride comfort and road holding. The system is simulated under various road excitations (step,
sine, and random profiles), and performance metrics such as body acceleration, suspension
deflection, and tire load are recorded. These optimal PID responses serve as training data for
the NN, which is structured as a feedforward network with backpropagation learning. The NN
learns the nonlinear mapping between road input, system states, and optimal control force
generated by the PID controller. Once trained, the NN replaces the PID controller in the active
suspension system, providing adaptive control that can handle nonlinearities and varying
operating conditions. The NN-based controller is validated through simulations under the same
road profiles, and its performance is compared against both passive and PID-controlled
suspensions. Key evaluation criteria include vibration reduction, adaptability, and
computational efficiency.

) Meural Metwork Training (nntraintool)

Meural Network

ik i Layer Dutput Layer

_"W—:@E “_: . FM:I

Algorithms

Data Division: Random 1

Training: Levenberg-Marquardt (trainlm
Performance: Mean Squared Error ([
Calculations:  MEX

Progress
Epoch: 0 12 iterations 1000
Tirme: Oe00:00

4  Performance: 6.02e+05 : 0.00
Gradient: 3.14e+06 _ 1.00e-07

| Mu: 0.00100 100 1.00e+10

1 | Validation Checks: 0 & )
Plots L
| Performance | (| |

Training State

Regression

Plot Interval: . 1 epochs

" Validation stop.
‘:"ﬂ" II'.'.I {3‘ .iII'I

Figure 13. NN training
Source: Author’S work, 2025.
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The comparative analysis is conducted using a 2DOF vertical body dynamics model
implemented in MATLAB/Simulink. Three suspension configurations are modeled: Passive
suspension, consisting of fixed spring and damper elements; Active suspension with PID
control, where an optimized PID controller generates the active force to minimize body
displacement and acceleration; and Active suspension with Neural Network (NN) control,
which learns from the optimal performance data of the PID controller and adapts to nonlinear
dynamics. Each configuration is subjected to identical road excitations, including step input (to
evaluate transient response), sine input (to analyze frequency response), and random input
(to simulate real-world road irregularities). Performance metrics include body acceleration,
suspension deflection, and tire load, which are recorded and compared across all
configurations. MATLAB/Simulink scopes and data logging are used to capture time-domain
responses, while frequency-domain analysis is performed for sinusoidal inputs. Statistical
measures such as RMS acceleration and peak displacement are computed to quantify ride
comfort and stability. The results are presented in comparative plots and tables, highlighting
improvements achieved by active suspension systems over passive suspension, and
demonstrating the superior adaptability and vibration suppression capability of NN-based
control compared to PID.

The NN training results are shown in Figures 14 and 15. The Neural Network (NN) training for
active suspension control achieved its best validation performance at epoch 6, where the Mean
Squared Error (MSE) reached its minimum value, indicating optimal learning and
generalization. This early convergence demonstrates that the NN effectively captured the
nonlinear dynamics of the suspension system using the training data derived from the PID
controller’s optimal performance. Additionally, the regression analysis between the predicted
outputs and the target values yielded a correlation coefficient (R) of 0.99885, which is very
close to 1. This high R-value confirms an excellent fit between the NN predictions and the
desired control force, signifying that the network accurately learned the underlying relationship
and can reliably reproduce optimal control actions. These results validate the robustness and
accuracy of the NN-based controller, making it suitable for real-time implementation in active
suspension systems to improve ride comfort and vibration suppression.

i EA Meural Network Training Performance (plotperform), Epoch 12, Validatio... — O

File Edit View Insert Tools Desktop Window Help v

[ Best Validation Performance is 5458.9065 at epoch 6
107 ¢

Train
Validation
Test

Best

=]
w

Mean Squared Error {mse)
=

0 2 4 6 8 10 12
12 Epochs

Figure 14. NN training performance
Source: Author’S work, 2025.
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Figure 15. NN training regression
Source: Author’S work, 2025.

The simulation results under a step road input demonstrate that the Neural Network (NN)-
controlled active suspension significantly outperforms both passive suspension and PID-
controlled active suspension in reducing vertical body vibration (Figure 16). For the passive
system, the body displacement exhibited large oscillations following the step disturbance, while
the PID controller reduced these oscillations but still showed noticeable fluctuations. In
contrast, the NN-based controller achieved superior damping performance, maintaining body
displacement fluctuations at less than 0.03 m throughout the transient response. This
improvement indicates that the NN effectively learned and optimized control actions beyond
the limitations of PID, providing faster settling time and minimal overshoot. The enhanced
vibration suppression translates into improved ride comfort and stability, validating the
effectiveness of Al-based control strategies for active suspension systems.

Under a sine road excitation, the Neural Network (NN)-controlled active suspension closely
imitates the performance of the optimally tuned PID controller while outperforming the passive
suspension system (Figure 17). The passive suspension exhibited significant oscillations,
resulting in poor ride comfort and stability. In contrast, both PID and NN controllers-maintained
body displacement within a narrow range, with the NN achieving fluctuations between -0.01 m
and 0.01 m, which is substantially better than the passive system. This demonstrates that the
NN successfully learned the PID’s control strategy and further optimized it to handle nonlinear
dynamics effectively. NN’s ability to maintain minimal oscillation under periodic disturbances
highlights its robustness and adaptability, ensuring improved vibration suppression and
enhanced ride comfort compared to conventional methods.
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When subjected to random road excitation, the Neural Network (NN)-controlled active
suspension demonstrated superior performance compared to both passive suspension and
PID-controlled active suspension (Figure 18). The passive system exhibited large and irregular
fluctuations, compromising ride comfort and stability. The PID controller improved vibration
suppression but still showed noticeable variations under unpredictable road conditions. In
contrast, the NN-based controller-maintained body displacement within a narrow range of -
0.03 m to 0.03 m, effectively reducing oscillations and ensuring smoother ride quality. This
improvement highlights the NN’s ability to adapt to nonlinear dynamics and optimize control
actions in real time, even under highly variable inputs. The results confirm that NN-based active
suspension provides enhanced vibration isolation and better overall vertical dynamic
performance compared to traditional control methods.

T T T
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zbfr PID
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Figure 16. Comparison performance for step input
Source: Author’S work, 2025.
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Figure 17. Comparison performance for sine input
Source: Author’S work, 2025.
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Figure 18. Comparison performance for random input
Source: Author’S work, 2025.

The simulation results clearly indicate that active suspension equipped with a PID controller
significantly improves vertical dynamic performance compared to a conventional passive
suspension system. Passive suspensions rely solely on fixed spring and damper
characteristics, which cannot adapt to varying road conditions, resulting in higher body
acceleration and greater suspension deflection under disturbances such as bumps or uneven
surfaces. In contrast, the PID-controlled active suspension introduces an additional control
force that dynamically adjusts based on the error between the desired and actual body position.
This adaptive capability enables the system to effectively suppress vibrations and maintain
vehicle stability. Performance metrics such as root mean square (RMS) body acceleration and
peak displacement demonstrate substantial reductions when using PID control, translating into
enhanced ride comfort and improved road holding. Furthermore, the PID controller’s derivative
action anticipates changes in road input, reducing overshoot and settling time compared to
passive systems. Although PID control assumes linearity and may require retuning for different
operating conditions, its simplicity and effectiveness make it a practical solution for improving
vertical dynamics in active suspension systems.
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The integration of a Neural Network (NN) controller that learns from the optimal performance
of a PID-controlled active suspension demonstrates a significant advancement in vibration
suppression and adaptability. While PID control improves vertical dynamics compared to
passive suspension, its fixed gains and linear assumptions limit performance under varying
road conditions and nonlinear behaviors. By training the NN on data generated from an
optimally tuned PID controller, the NN inherits baseline performance while gaining the ability
to approximate complex nonlinear relationships and adapt to dynamic environments.
Simulation results show that the NN-based controller achieves lower body acceleration and
suspension deflection than PID, particularly under random road profiles and high-frequency
disturbances. This improvement is attributed to NN’s capability to continuously optimize control
actions without manual retuning, ensuring robust performance across diverse operating
conditions. Furthermore, the NN reduces overshoot and settling time more effectively than PID,
enhancing ride comfort and stability. Although NN implementation requires additional
computational resources and training time, its superior adaptability and optimization potential
make it a promising solution for next-generation intelligent suspension systems.

Active suspension systems controlled by Neural Networks (NN) outperform PID-based
systems primarily due to their ability to handle nonlinearities, adapt to changing conditions,
and optimize control actions in real time. PID controllers operate on fixed proportional, integral,
and derivative gains, which are tuned for specific operating conditions. This makes PID
effective in predictable environments but less robust under varying loads, speeds, and road
profiles. In contrast, NN controllers learn complex nonlinear relationships between system
states and control forces, enabling them to approximate optimal control strategies beyond the
limitations of linear assumptions. By training on data from an optimally tuned PID controller,
the NN inherits baseline performance while gaining adaptability to dynamic scenarios such as
sudden bumps or random road excitations. Simulation studies consistently show that NN-
based control reduces body acceleration, suspension deflection, and tire load more effectively
than PID, resulting in improved ride comfort and stability. Additionally, NN controllers exhibit
faster response, lower overshoot, and better vibration suppression across a wide frequency
range. Although NN requires more computational resources and training time, its superior
adaptability and optimization capabilities make it a more advanced and reliable solution for
modern active suspension systems.

Conclusion

The study demonstrates that active suspension systems significantly enhance vehicle vertical
dynamic performance compared to conventional passive suspensions, with Neural Network
(NN)-based control offering the most substantial improvement. While PID-controlled active
suspension reduces body acceleration and suspension deflection relative to passive systems,
its performance is constrained by fixed gains and linear assumptions, limiting adaptability
under varying road conditions. In contrast, NN controllers, trained on optimal PID performance
data, leveraged artificial intelligence (Al) to learn complex nonlinear dynamics and optimize
control actions in real time. This capability enables superior vibration suppression, improved
ride comfort, and enhanced road holding across diverse operating scenarios, including random
road profiles and high-frequency disturbances. The application of Al through NN in active
suspension systems represents a transformative approach, providing adaptability, robustness,
and intelligent optimization that traditional control methods cannot achieve. These findings
highlight the potential of Al-driven suspension technologies as a key enabler for next-
generation vehicles, particularly in autonomous and electric platforms where comfort and
stability are critical design priorities.
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