

The Effect Of Technology Access, Digital Literacy, And Ease Of Use On The Decision To Use The Uprintis Indonesia Platform

Widiya Priska Andayani¹

Tin Agustina Karnawati¹

¹ Affiliation :Institut Teknologi dan Bisnis ASIA Malang, Indonesia

Correspondence E-mail : widiyapriska@gmail.com

Abstract

Introduction/Main Objectives: This research analyzes the influence of technology access, digital literacy, and ease of use on the decision to use the Uprintis Indonesia Platform among women's MSMEs.

Background Problems: Digital transformation presents women's MSMEs with the challenge of the Second Level Digital Divide, where access to technology is insufficient without the ability to utilize it effectively.

Novelty: The research offers novelty by integrating the Digital Divide framework and the Technology Acceptance Model (TAM) to analyze empowerment platforms within the underexplored context of Corporate Transformation 5.0.

Research Methods: An associative quantitative approach was employed, utilizing a survey of 100 women's MSMEs users of the platform in East Java. Data were analyzed through multiple linear regression.

Finding/Results: Technology access, digital literacy, and ease of use each have a positive and significant influence, both individually and collectively, on usage decisions. Further analysis indicates that digital literacy is the most influential factor.

Conclusion: The results reinforce the characteristics of the Second Level Digital Divide. They highlight the necessity for a strategic shift in empowerment initiatives—from solely providing technological infrastructure to enhancing digital literacy and developing genuinely user-centric platforms to promote sustained adoption.

Keywords: Technology Access, Digital Literacy, Ease of Use, Usage Decision, Second-Level Digital Divide

Introduction

The wave of digital transformation has become a real phenomenon that is changing the operational landscape of Micro, Small, and Medium Enterprises (MSMEs) in Indonesia. Post-COVID-19 pandemic, technology adoption is no longer just a choice but a necessity to maintain competitiveness and business continuity (Badan Pusat Statistik (BPS), 2023). This transformation becomes increasingly relevant with the evolution toward the Corporate Transformation 5.0 concept, which emphasizes sustainability and inclusivity in economic dynamics. However, behind this great potential, women-managed MSMEs face complex challenges in the digitalization process. Their significant contribution, accounting for approximately 60% of the national Gross Domestic Product (GDP) and creating 97% of employment (Kemenko Perekonomian RI, 2025), contrasts sharply with the obstacles they face.

However, behind the widespread access to technology, women-led MSMEs actually face significant challenges in the digitalization process. There remains a wide gap or "divide," where widespread access has not been matched with effective utilization, namely between technology adoption and optimization of its use. Many MSMEs have become "internet literate" and use social media, but have not yet been able to utilize more complex digital tools to truly elevate their business level. Similar results have been supported by (Susanti et al., 2022), which demonstrate that although members of the Dasa Wisma women's group have had access to technology like WhatsApp, their proficiency and skill in utilizing digital information critically and optimally remain very limited. They are often stuck in passive platform usage without optimizing tools that could enhance business efficiency, professionalism, and scalability. In fact, the contribution of women's MSMEs is very significant, where according to data (Kemenko Perekonomian RI 2025), they account for approximately 60% of the national Gross Domestic Product (GDP) and generate 97% of employment opportunities.

The main challenge faced here is a tangible manifestation of the Second Level Digital Divide or Digital Divide Level Two (Van Dijk, 2020, as cited in Reynolds, 2020). If the first-level gap revolves around the lack of physical access to technology devices, then the second-level gap has evolved into inequality in the capacity of skills and deep, strategic utilization of technology. Empirical findings (Susanti et al., 2022) in Banyuwangi Regency confirm this phenomenon, where despite available technology access, low digital literacy hinders optimal utilization for economic empowerment. This phenomenon of the second-level digital divide becomes the basis for the emergence of three independent variables that are suspected to influence platform usage decisions, namely:

- Technology access, which is not just about device ownership but also includes stable and affordable connectivity as a material foundation (Van Dijk, 2005, as cited in Soomro et al., 2020). Research (Awaluddin, 2025) within the Technology Organization Environment (TOE) framework affirms that technology factors, including digital infrastructure, are the strongest determinants of digital platform adoption by MSMEs.
- Digital literacy, which serves as a driver to transform access into added value. (UNESCO, 2018) It is defined as a set of competencies that encompasses the ability to operate devices, search for and evaluate information, communicate, create content, and ensure security while solving technical problems.
- Ease of use serves as a primary factor within the Technology Acceptance Model (TAM), as proposed by (Davis, 1989). This concept relates to how much people believe engaging with a system requires minimal effort, a factor that has been shown to significantly influence decisions to adopt e-commerce platforms (Renggawati et al., 2023).

Theoretical Study

Technology Access

Technology access is conceptualized as the availability of information and communication technologies (ICT) infrastructure and devices that facilitate the use of digital services by individuals or organization. (Van Dijk, 2005) This is described as physical access, which forms the foundation for subsequent levels of access (Soomro et al., 2020). This concept not only includes ownership of devices such as smartphones and computers but also stable and affordable internet connectivity.

According Van Dijk (2005), the digital divide theory divides technology access into four sequential levels (Soomro et al., 2020):

- Motivational access – interest in using technology
- Physical access – availability of devices and infrastructure
- Skills access – ability to use technology
- Usage access – vability to use technology

According Van Dijk (2005), indicators that can measure technology access are:

- Availability of digital devices such as smartphones and computers
- Stable and adequate internet connection quality
- Affordability of technology access
- Ease in accessing digital platforms anytime
- Reliability of technology infrastructure at the user location

The updated Technology Organization Environment (TOE) framework by (Awaluddin, 2025) also supports that the technology context (including digital infrastructure) is a determining factor in the adoption of technological innovation by organizations including MSMEs.

Digital Literacy

The concept of digital literacy has evolved from mere technical skills into a holistic competency. (Eshet-alkalai, 2004) defines digital literacy as a survival skill essential for the digital era, encompassing cognitive, motor, sociological, and emotional abilities necessary for effective functioning in digital environments. This deep conceptual understanding was subsequently reinforced and operationalized by (UNESCO, 2018), more specifically, digital literacy encompasses the capacity to identify, assess, utilize, disseminate, and generate content via information technologies and the internet.

UNESCO's Digital Literacy Framework (2018) identifies six competency domains:

- Device and software operation – device and application operation
- Information and data literacy – ability to search for and evaluate information
- Communication and collaboration – berkomunikasi dan berkolaborasi secara digital
- Digital content creation – communicating and collaborating digitally
- Safety – protecting yourself and personal data
- Problem-solving – creatively solving problems using technology

According to UNESCO (2018), indicators that can measure digital literacy are:

- Ability to operate digital devices such as smartphones and computers
- Ability to find the required information on digital platforms
- Communication and interaction skills through digital platforms
- Ability to create and manage digital content for business
- Ability to protect personal data and digital transactions
- Ability to solve technical problems encountered in using the platform

In the domain of Micro, Small, and Medium Enterprises MSMEs, digital literacy emerges as a pivotal element that promotes the fullest exploitation of digital platforms, as delineated by (Susanti et al., 2022) in relation to the second-level digital divide. Research(Wiyanti &

Wikaningtyas, 2025) also emphasizes the importance of specific digital literacy, especially financial digital literacy, in influencing how users utilize digital platforms.

Ease of Use

Ease of use is delineated as the level at which a person believes using a particular technology system will require significant effort. This construct represents a cornerstone of the Technology Acceptance Model (TAM), pioneered by Davis (1989), which remains relevant to this day as the theoretical basis for technology acceptance.

In his foundational article "Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology," according to Davis (1989), ease of use is described as a user's belief that using a system will be simple. Although this publication is over 10 years old, the TAM theory remains a cornerstone in technology acceptance research and has been validated through hundreds of subsequent studies (Venkatesh et al., 2003).

According to Davis (1989), the indicators that can measure ease of use on the Uprintis Indonesia platform are:

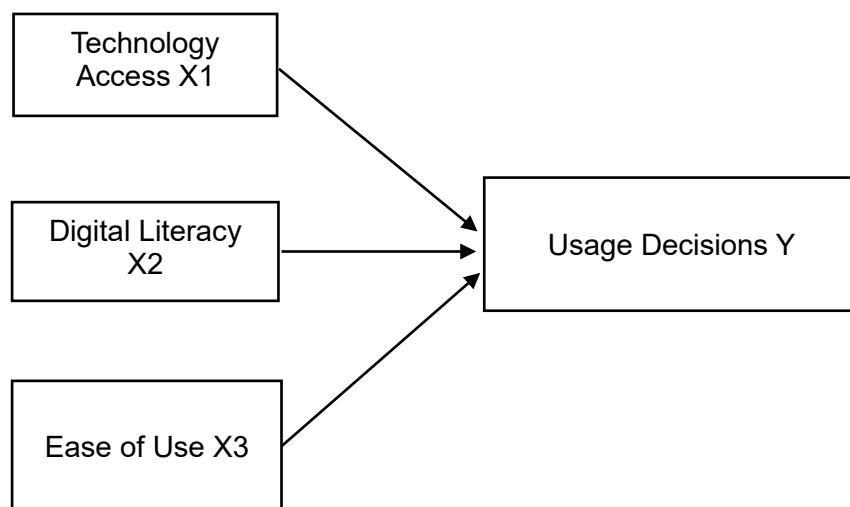
- Platform Uprintis Indonesia can be easily learned by users
- Platform Uprintis Indonesia can be easily controlled by users
- Platform Uprintis Indonesia can be used flexibly by users
- Platform Uprintis Indonesia can be easily used by users
- Platform Uprintis Indonesia has a clear and easy-to-understand education flow and navigation for users

Usage Decision

Decision-making in this research refers to the complex process where female SME actors decide to adopt and actively use the Uprintis Indonesia platform. This process can be theoretically explained using the five-stage purchasing decision-making model proposed by (Kotler, P.& Armstrong, 2016), which consists of:

- Problem Introduction
- Information search
- Evaluation of alternatives
- Purchase decision
- Post-purchase behavior

As the dependent variable, usage decision is operationalized as a construct representing the outcome of the decision-making process, this covers more than just the initial choice to adopt. (stage 4), but more so the commitment and positive evaluation in the post-adoption phase (stage 5). To measure this variable, the research adopts indicators validated by (Renggawati et al., 2023), which operationalized the post-purchase behavior concept of (Kotler, P.& Armstrong, 2016) into the e-commerce context. These indicators, adapted for the Indonesian Uprintis Platform, are:


- Platform Uprintis Indonesia can meet the needs of MSME users with various empowerment features provided
- Confidence and trust in using the Uprintis Indonesia platform for business development
- Platform Uprintis Indonesia becomes the top priority choice for the digitalization needs of MSMEs
- Satisfaction and positive impression after using the Uprintis Indonesia Platform
- Willingness of users to recommend the Uprintis Indonesia platform to other MSMEs
- Commitment to continuously use the Uprintis Indonesia Platform in business operations

In response to these challenges, Uprintis Indonesia emerges as an empowerment platform that adopts a Corporate 5.0 transformation approach. The platform has developed various

initiatives, such as the Advanced Digital Women's Class (KPMD) and the Eduprintis program, which have reached tens of thousands of entrepreneurs. The success of platforms like Uprintis Indonesia in realizing digital transformation is highly dependent on the decisions of MSME actors to adopt and actively use their services. The Technology Acceptance Model (TAM), proposed by Davis (1989), posits that technology adoption is primarily influenced by perceived usefulness and ease of use, key factors for women-owned MSMEs confronting the Second-Level Digital Divide, these perceptions frequently remain underdeveloped as a result of fundamental limitations. Therefore, this complex decision is strongly suspected to be influenced by the dynamic interaction between technology access, digital literacy, and ease of use, which ultimately forms the decision to use the Uprintis Indonesia platform.

Although various approaches have been taken to advance MSMEs, findings from previous studies remain fragmented. A qualitative study conducted by (Asnawan et al., 2022) and (Virgiyanti et al., 2025), for example, focuses more on community mentoring or general marketing strategies without integrating the Corporate Transformation 5.0 framework or analyzing causal relationships between technology variables. Meanwhile, quantitative research such as (Wiyanti & Wikaningtyas, 2025) and (Amelia et al., 2022) emphasizes the importance of digital literacy, yet their focus is not yet on integrated empowerment platforms like Uprintis Indonesia. On the other hand, although the Technology Acceptance Model (TAM) has proven robust, its application within this specific context to the Second-Level Digital Divide among women MSMEs remains limited.

To address the fragmentation of existing approaches and contextual limitations, this study synthesizes the Digital Divide framework, which explains access and literacy phenomena, with the Technology Acceptance Model (TAM), which takes perceptions into account of ease of use and decision-making, to analyze empowerment platforms in the context of Corporate Transformation 5.0. The resulting conceptual framework demonstrates the dynamic relationships among these three independent variables and the dependent variable, as visualized below.

Figure 1 Conceptual Framework

Source: Researcher Data, 2025

Based on the background, problem identification, and research novelty, this study examines the relationships between technology access, digital literacy, and ease of use on the decision to adopt the Uprintis Indonesia Platform, both individually and collectively, among women-owned micro, small, and medium enterprises MSMEs in East Java. The findings are expected

to contribute to the theoretical advancement of technology acceptance models and to inform the practical development of more sustainable and inclusive empowerment platforms.

From the problem formulation, the hypothesis is:

H1: Technology access exerts a positive and significant effect on the decision to use the Uprintis Indonesia platform.

H2: Digital literacy demonstrates a positive and significant influence on the decision to use the Uprintis Indonesia platform.

H3: Ease of use exhibits a positive and significant influence on the decision to use the Uprintis Indonesia platform.

H4: Technology access, digital literacy, and ease of use collectively exert a positive and significant effect on the decision to use the Uprintis Indonesia platform.

Research Methods

An associative quantitative methodology was employed, using a survey design to investigate causal relationships between independent and dependent variables (Sugiyono, 2019). This study focused on female MSMEs using the Uprintis Indonesia Platform in East Java, considering that the Eduprintis program of the platform has reached a significant, namely 12,060 entrepreneurs in this region (Uprintis Indonesia, 2025).

The population in this study was all 12,060 female MSMEs using the Uprintis Indonesia Platform in East Java, with the criteria of having used the Uprintis Indonesia Platform for at least 3 months, purposive sampling was applied as the sampling technique.

This study determined the sample size by applying the Slovin formula, utilizing a 10% margin of error, as detailed below:

$$n = \frac{N}{1 + N(e)^2} = \frac{12.060}{1 + 12.060 (0,1)^2} = 99,17 = 100$$

This study measured three independent variables and one dependent variable. Technology Access (X1) is defined as the availability of ICT infrastructure and devices (Van Dijk, 2005, as cited in Soomro et al., 2020) and is measured with 5 indicators, including device availability, internet connection quality, affordability of technology access, ease of accessing digital platforms, and reliability of technology infrastructure. Concurrently, Digital Literacy (X2) denotes the competency to locate, assess, and generate content utilizing ICT (UNESCO, 2018) and is measured with 6 indicators, such as the ability to operate devices and create digital content. Ease of Use (X3) is defined as the user's belief that utilizing the system does not require much effort (Davis, 1989) and is measured with 5 indicators, such as ease of learning and controlling platforms. Meanwhile, Usage Decision (Y) is the decision-making process for adopting a platform (Kotler, P. & Armstrong, 2016) which is operationalized with 6 indicators from (Renggawati et al., 2023), such as need fulfillment and continuous usage commitment. Indicators were assessed using a 1-5 Likert scale, where each value represented a specific level of agreement: (1) Strongly Disagree, (2) Disagree, (3) Neutral, (4) Agree, and (5) Strongly Agree.

Data Collection and Analysis Procedures

Validity of the questionnaire was assessed using the Pearson Product-Moment correlation, and reliability was evaluated with Cronbach's Alpha coefficient on a group of 30 respondents not included in the main sample. The results indicated that all instruments were valid (r -count > 0.1956) and reliable ($\alpha > 0.70$). Subsequently, the data procured were subjected to multiple

linear regression analysis employing IBM SPSS Statistics. The analytical procedure was initiated with classical assumption testing, encompassing evaluations for normality, multicollinearity, and heteroscedasticity. The regression model tested was:

$$Y = a + b_1X_1 + b_2X_2 + b_3X_3 + e$$

Hypothesis testing was performed using both partial (t-test) and simultaneous (F-test) methods at a significance level of $\alpha = 0.05$, and the contribution of independent variables was measured through the coefficient of determination (R^2).

Result

This research was conducted on female MSMEs using the Uprintis Indonesia platform in the East Java region. Data was obtained through online questionnaires using a purposive sampling technique. A total of 100 respondents meeting the inclusion criteria participated in the study. The demographic profile indicates that most respondents are within the productive age range, with the 25-35 years age group (31%) and 36-45 years (26%) dominating. 23% of respondents are over 45 years old, while 20% are under 25 years old. Regarding platform usage duration, 40% of respondents have participated for 7 to 12 months, followed by 33% who joined for 3-6 months, and 27% who have been users for more than 1 year.

Validity Test

Table 1 Results of Validity Test

Item	R-Count	R-Tabel	Sig.(2-tailed)	A	Condusion
X1.1	0.768	0.1956	0.000	0.05	Valid
X1.2	0.750	0.1956	0.000	0.05	Valid
X1.3	0.840	0.1956	0.000	0.05	Valid
X1.4	0.773	0.1956	0.000	0.05	Valid
X1.5	0.779	0.1956	0.000	0.05	Valid
X2.1	0.784	0.1956	0.000	0.05	Valid
X2.2	0.835	0.1956	0.000	0.05	Valid
X2.3	0.788	0.1956	0.000	0.05	Valid
X2.4	0.793	0.1956	0.000	0.05	Valid
X2.5	0.756	0.1956	0.000	0.05	Valid
X2.6	0.835	0.1956	0.000	0.05	Valid
X3.1	0.821	0.1956	0.000	0.05	Valid
X3.2	0.709	0.1956	0.000	0.05	Valid
X3.3	0.771	0.1956	0.000	0.05	Valid
X3.4	0.774	0.1956	0.000	0.05	Valid
X3.5	0.849	0.1956	0.000	0.05	Valid
Y.1	0.808	0.1956	0.000	0.05	Valid
Y.2	0.795	0.1956	0.000	0.05	Valid
Y.3	0.849	0.1956	0.000	0.05	Valid
Y.4	0.826	0.1956	0.000	0.05	Valid
Y.5	0.769	0.1956	0.000	0.05	Valid
Y.6	0.746	0.1956	0.000	0.05	Valid

Source: Researcher Data, 2025

Table 1 presents the validity test results, indicating that all research instruments are valid. The R-Count value for each statement item, ranging from X1.1 to Y.6, consistently exceeds the R-Table value of 0.1956. Furthermore, the significance value (Sig. (2-tailed)) for all items is 0.000, The resulting significance value is below the established research threshold ($\alpha = 0.05$), indicating that the questionnaire employed to measure the study's variables satisfies the data validity requirements and is appropriate for further measurement.

Reliability Test

Table 2 Results of Reliability Test

Variabel	Cronbach's Alpha	Provision	Conclusion
X1	0.840	> 0.6	Reliable
X2	0.885	> 0.6	Reliable
X3	0.843	> 0.6	Reliable
Y	0.885	> 0.6	Reliable

Source: Researcher Data, 2025

Table 2 demonstrates that all research instruments exhibit reliability, the research instrument demonstrated high reliability, as evidenced by Cronbach's Alpha values for all variables exceeding the 0.6 threshold, confirming the internal consistency of the measurement scales a questionnaire used to measure Technology Access (X1), Digital Literacy (X2), Ease of Use (X3), and Usage Decision (Y) is a measuring tool with high reliability and good internal consistency.

Normality Test

The normality test is conducted to determine whether the disturbance variable, or residual, in a regression model follows a normal distribution (Ghozali, 2018). An effective regression model is characterized by variables that exhibit a normal or near-normal distribution.

Table 3 Result of Kolmogorov-Smirnov Normality Test

One-Sample Kolmogorov-Smirnov Test		Unstandardized Residual
N		100
Normal Parameters ^{a,b}	Mean	.4538871
	Std. Deviation	4.73463494
Most Differences	Extreme Absolute	.067
	Positive	.054
	Negative	-.067
Test Statistic		.067
Asymp. Sig. (2-tailed) ^c		.200 ^d
Monte Carlo Sig. (2-tailed) ^e		.311
95% Confidence Interval	Lower Bound	.302
	Upper Bound	.320

Source: Researcher Data, 2025

Table 3, the study data follow a normal distribution, supported by an Asymp. Sig. (2-tailed) value of 0.200 which exceeds the 0.05 significance threshold. This result leads to the acceptance of the null hypothesis (H0), indicating that the residuals from the regression model are normally distributed. This result serves as a basis that meets the normality assumption for further parametric statistical analysis.

Multicollinearity Test

Table 4 Multicollinearity Test

Coefficients ^a		Standardized			Collinearity Statistics		
		Unstandardized Coefficients		Std. Error	Beta	T	Sig.
Model	B	Std. Error					Tolerance
1 (Constant)	31,691	,678			46,721	,000	
X1	,079	,020	,188		3,936	,000	1,000
X2	,208	,015	,659		13,807	,000	,998
X3	,232	,021	,526		11,020	,000	,998
a. Dependent Variable: Y							

Source: Researcher Data, 2025

Table 4 demonstrates the absence of multicollinearity among the independent variables in the regression model. All Variance Inflation Factor (VIF) values for Technology Access (1.000), Digital Literacy (1.002), and Ease of Use (1.002) are well below the commonly accepted threshold of 10.0. Corresponding tolerance values (1.000, 0.998, and 0.998) all exceed the 0.1 criterion, confirming the model's suitability for predicting the dependent variable, Usage Decision (Y).

Heteroscedasticity Test

Table 5 Heteroscedasticity Test

Coefficients ^a		Unstandardized Coefficients		Standardized Coefficients		Collinearity Statistics		
		Model	B	Std. Error	Beta	T	Sig.	Tolerance
1	(Constant)	,011	,476			,023	,981	
	X1	-,011	,014	-,077		-,760	,449	1,000
	X2	,009	,011	,083		,824	,412	,998
	X3	,012	,015	,081		,798	,427	,998
a. Dependent Variable: ABSRES								

Source: Researcher Data, 2025

Table 5 indicates that all variables have significance values greater than 0.05. Therefore, the regression model is free from heteroscedasticity and is deemed suitable for forecasting the dependent variable from the independent variables.

Multiple Regression Analysis

Multiple regression analysis was employed to assess the magnitude of relationships among two or more variables.

Table 6 Result of Multiple Regression Analysis

Coefficients ^a		Standardized Coefficients			Collinearity Statistics		
Model	B	Std. Error	Beta	T	Sig.	Tolerance	VIF
1	(Constant) 31,691	,678		46,721	,000		
	X1	,079	,020	,188	3,936	,000	1,000
	X2	,208	,015	,659	13,807	,000	,998
	X3	,232	,021	,526	11,020	,000	,998

a. Dependent Variable: Y

Source: Researcher Data, 2025

Table 6 presents the multiple linear regression mode:

$$Y = 31.691 + 0.079X1 + 0.208X2 + 0.232X3$$

From the regression model results, the following information can be obtained:

- The constant value of 31.691 is positive, suggesting that in the absence of Technology Access (X1), Digital Literacy (X2), and Ease of Use (X3), the Usage Decision (Y) is expected to be 31.691 units.
- The regression coefficient for Technology Access (X1) is 0.079, indicating that a one-unit increase in Technology Access is associated with a 0.079-unit increase in Usage Decision, holding other variables constant.
- The regression coefficient for Digital Literacy (X2) is 0.208, indicating that a one-unit increase in Digital Literacy corresponds to a 0.208-unit increase in Usage Decision, while other variables are held constant.
- The regression coefficient for Ease of Use (X3) is 0.232, indicating that a one-unit increase in Ease of Use results in a 0.232-unit increase in Usage Decision, assuming all other variables remain constant.

Among the three independent variables, Ease of Use (X3) has the largest regression coefficient, indicating that this variable has the greatest influence on User Decision (Y).

Determination Coefficient Test (R^2)

Table 7 Coefficient of Determination Test (R^2)

Model Summary ^b					
Model	R	R Square	Adjusted Square	R Std. Error of the Estimate	
1	,884 ^a	,782	,775	,34857	

Source: Researcher Data (2025)

Table 7 indicates that the R Square (R^2) value is 0.782, suggesting that 78.2% of the variation in Usage Decision (Y) is attributable to the three independent variables: Technology Access (X1), Digital Literacy (X2), and Ease of Use (X3). The remaining 21.8% of the variation can be attributed to factors or variables that were not incorporated into the current research model.

t-test (Partial Test)

Table 8 t Test for Multiple Regression Analysis

Coefficients ^a		Unstandardized Coefficients		Standardized Coefficients		Collinearity Statistics	
Model		B	Std. Error	Beta	T	Sig.	
1	(Constant)	31,691	,678		46,721	,000	
	X1	,079	,020	,188	3,936	,000	1,000
	X2	,208	,015	,659	13,807	,000	,998
	X3	,232	,021	,526	11,020	,000	,998

Source: Researcher Data (2025)

- The significance value of technology access is $0.000 < 0.050$, then for t-count $3.936 > t\text{-table } 1.984$. The analysis results show that H_0 is rejected and H_1 is accepted, indicating a positive and significant effect, so partially there is an influence between technology access on the decision to use the Uprintis Indonesia platform.
- The significance value of digital literacy is $0.000 < 0.050$, then for the t-count $13.807 > t\text{-table } 1.984$. The analysis results show that H_0 is rejected and H_2 is accepted, so partially there is an influence between digital literacy on the decision to use the Uprintis Indonesia platform. Partially, digital literacy has an influence of 65.9% on the decision to use the Uprintis Indonesia platform by women's SMEs in East Java.
- The significance value for ease of use is 0.000 , which is less than the threshold of 0.050 , and the t-count of 11.020 exceeds the t-table value of 1.984 . These results indicate that H_0 is rejected and H_3 is accepted, demonstrating a partial influence of ease of use on the decision to use the Uprintis Indonesia platform. Specifically, ease of use accounts for 52.6% of the decision to use the Uprintis Indonesia platform among female SMEs in East Java.

Test F (Simultaneous Test)

An F test was conducted to assess whether variables X1, X2, and X3 simultaneously influence variable Y. The results of the F test are presented in the table below:

Table 9 F Test for Multiple Regression Analysis

ANOVA ^a		Sum of Squares		Mean Square	F	Sig.
Model		Df				
1	Regression	41,749	3	13,916	114,538	,000 ^b
	Residual	11,664	96	,122		
	Total	53,414	99			

Source: Researcher Data (2025)

Table 9 indicates that the calculated F-value is 114.538, with a significance level of 0.000. Since the significance value is less than 0.05, H0 is rejected and H4 is accepted. These results indicate that access to technology, digital literacy, and ease of use collectively exert a significant influence on the decision of women's SMEs in East Java to use the Uprintis Indonesia platform.

Discussion

The Effect of Technology Access on Usage Decisions

The findings indicate that access to technology exerts a positive and significant influence on the decisions of female Micro, Small, and Medium Enterprises (MSMEs) to utilize the Uprintis Indonesia platform. Technology access is measured through five indicators based on theory (Van Dijk, 2005), namely: availability of digital devices (smartphone/computer), stable internet connection quality, affordability of access costs, ease of accessing the platform anytime, and reliability of technology infrastructure at the user's location. The analysis results prove that the availability of digital devices, stable internet connections, and affordable access costs make it easier for female MSMEs to continuously access the platform. Good technology infrastructure enables digital business processes to run smoothly, thereby increasing trust and platform usage decisions.

This result aligns with the findings (Awaluddin, 2025) that applied the Technology Organization Environment (TOE) framework and proved that technological factors, which include digital infrastructure as a representation of technology access, these factors are the strongest and most significant determinants in the adoption of digital platforms by Micro, Small, and Medium Enterprises (MSMEs), accounting for 35% of the variance in adoption decisions. This result reinforces the role of technology access as the essential physical foundation in the technology adoption process and further substantiates the core argument of the Second Level Digital Dividendtheory (Van Dijk, 2020, as cited in Reynolds, 2020). As illustrated by the research (Susanti et al., 2022), having technology access (such as smartphones) is a necessary but insufficient condition. The high coefficient of determination (R^2) in this model (78.2%) suggests that digital literacy and ease of use are the primary determinants influencing optimal platform utilization, which is a characteristic of the second-level divide. In other words, the research (Susanti et al., 2022) does not deny the importance of technology access, but emphasizes that access alone is not sufficient without being balanced with adequate digital capacity.

The Effect of Digital Literacy on Usage Decisions

The research findings demonstrate that digital literacy exerts a positive and significant influence on individuals' decisions to utilize the Uprintis Indonesia platform. The results show that the ability to operate devices, search for information, communicate digitally, and create business content enables SMEs to utilize the various features offered by the platform. Additionally, skills in maintaining digital security and resolving technical issues also provide a sense of security and confidence, thereby influencing users' decisions to adopt and use the platform more intensively.

These findings align with previous studies by Wiyanti and Wikaningtyas (2025) and Amelia et al. (2022), which also report that digital literacy has a positive and significant influence on decisions regarding digital platform usage. In contrast, the present study's results diverge from those of (Asnawan et al., 2022), who reported that many women SME operators continue to rely on conventional direct marketing methods and have not adopted available online media.

The Effect of Ease of Use on Usage Decision

The results of this study indicate that the ease of use variable has a positive and significant influence on users' decisions to adopt the Uprintis Indonesia platform. This means that a platform that is easy to learn, control, and use flexibly can reduce users' cognitive load. Clear and easily understandable interactions will enhance the user experience, thereby strengthening their decision to choose and use the platform as their primary digital solution.

This finding is consistent with the work of Renggawati et al. (2023), who reported that ease of use significantly and positively influences e-commerce usage decisions. However, this finding differs from the research by (Virgiyanti et al., 2025), which found that although adopting digital platforms can increase revenue, there are challenges such as difficulties in adapting to technology and a lack of understanding of the digital world.

Within the framework of Corporate Transformation 5.0, these three factors collectively influence decisions regarding platform usage. Technology access provides the physical foundation needed, digital literacy gives the ability to use technology, while ease of use provides a comfortable experience for users. The combination of these three factors creates the best conditions for women SMEs in making decisions to use the Uprintis Indonesia Platform continuously.

Conclusion

The analysis indicates that technology access, digital literacy, and ease of use each exert a positive and significant influence, both individually and collectively, on the decision to use the Uprintis Indonesia Platform. Key findings reveal that digital literacy is the most determining factor, confirming the essence of the Second Level Digital Divide where the capacity to utilize technology is more crucial than mere ownership of access.

As a limitation, this research is limited to women's MSMEs in East Java with a cross-sectional approach. Future research should consider expanding the study area to a national scale, add mediator or moderator variables such as perception of benefits or social support, and apply a longitudinal approach to understand the development of technology adoption. Practically, these findings recommend that platform managers and policymakers focus on practical and in-depth digital literacy training programs, while continuously improving the platform interface design to be more intuitive and accessible to various user groups, in order to promote more sustainable and inclusive adoption.

References

Amelia, S. R., Fitriana, A., & Akbar, D. (2022). *Literasi Keuangan Digital Wirausaha Wanita Dalam Pengelolaan Bisnis Online*. 6(2), 426–437.

Asnawan, A., Alfiana, D. M., Sa'diyah, H., Efendi, M. D., Azizah, S. A., & Rohman, T. (2022). Pemberdayaan Perempuan UMKM Melalui Digital Marketing di Desa Jombang Kecamatan Jombang. *Ngarsa: Journal of Dedication Based on Local Wisdom*, 2(2), 189–202. <https://doi.org/10.35719/ngarsa.v2i2.320>

Awaluddin, M. (2025). *Technological , Organizational , and Environmental Determinants of Digital Platform Adoption by SMEs*. 2(1), 45–56. <https://doi.org/10.59613/g6cd9868>

Badan Pusat Statistik (BPS). (2023). *Persentase Rumah Tangga yang Memiliki/Menguasai Telepon Seluler Menurut Provinsi dan Klasifikasi Daerah*, 2023. <https://www.bps.go.id/statistics-table/2/Mzkxlzl=/persentase-rumah-tangga-yang->

memiliki-menguasai--telepon-seluler-menurut-provinsi-dan-klasifikasi-daerah.html

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly: Management Information Systems*, 13(3), 319–339. <https://doi.org/10.2307/249008>

Eshet-alkalai, Y. (2004). *Digital Literacy: A Conceptual Framework for Survival Skills in the Digital Era*. 13, 93–106.

Ghozali, I. (2018). *Aplikasi Analisis Multivariate Dengan Program IBM SPSS 25* (9th ed.). Badan Penerbit Universitas Diponegoro.

Kemenko Perekonomian RI. (2025). *Pemerintah Dorong UMKM Naik Kelas, Tingkatkan Kontribusi terhadap Ekspor Indonesia*. <https://www.ekon.go.id/publikasi/detail/6152/pemerintah-dorong-umkm-naik-kelas-tingkatkan-kontribusi-terhadap-ekspor-indonesia#:~:text=Peran UMKM sebagai tulang punggung,dari 64 juta unit usaha>

Kotler, P. & Armstrong, G. (2016). *Principles of Marketing* (16th ed.). Pearson Education Limited.

Renggawati, W. J., Prihatini, A. E., & Listyorini, S. (2023). Pengaruh Electronic Word of Mouth (E-Wom) dan Kemudahan Penggunaan Aplikasi Shopee terhadap Keputusan Penggunaan E-Commerce Shopee. *Jurnal Ilmu Administrasi Bisnis*, 12(3), 986–997. <https://ejournal3.undip.ac.id/index.php/jiab>

Reynolds, R. (2020). *The digital divide*. 99(March). <https://doi.org/10.1002/asi.24355>

Soomro, K. A., Kale, U., Curtis, R., Akcaoglu, M., & Bernstein, M. (2020). *Digital divide among higher education faculty*.

Sugiyono. (2019). *Metode Penelitian Kuantitatif, Kualitatif, dan R&D*. Penerbit Alfabeta Bandung.

Susanti, L. D., Indrianti, D. T., Hilmi, M. I., & Handayani, S. M. (2022). Literasi Digital: Pemberdayaan Perempuan pada Kelompok Dasa Wisma di Kabupaten Banyuwangi. *Diklus: Jurnal Pendidikan Luar Sekolah*, 6(2), 115–126. <https://doi.org/10.21831/diklus.v6i2.49504>

UNESCO. (2018). *A global framework of reference on digital literacy skills*.

Uprintis Indonesia. (2025). *Profil dan Capaian Program Uprintis Indonesia [Laporan internal yang tidak dipublikasikan]*.

Van Dijk, J. A. G. M. (2005). *The Deepening Divide: Inequality in the Information Society*. Sage Publications.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. *MIS Quarterly*, 425–478.

Virgiyanti, D. F., Manaanu, Y. Al, Kamaluddin, I., Kurniawan, B. G., Wicaksana, F. A., Yogaiswari, K. A., Kurniawan, A. R., & Sasongko, Y. B. (2025). Manajemen pemasaran digital untuk meningkatkan daya saing UMKM. *Jurnal Pembelajaran Pemberdayaan Masyarakat (JP2M)*, 6(1), 189–201. <https://doi.org/10.33474/jp2m.v6i1.23284>

Wiyanti, W., & Wikaningtyas, R. (2025). Pengaruh Literasi Digital Keuangan Terhadap Keputusan Generasi X dalam Menggunakan Aplikasi Perbankan. *Jurnal Riset Manajemen Dan Akuntansi*, 5(1), 361–377. <https://doi.org/10.55606/jurima.v5i1.5607>